Plasma Processes, Inc.

NASA SBIR Phase II Proposal 02-II A4.02-8845

Innovative W Alloys for Advanced Propulsion Systems

Robert Hickman, Plasma Processes, Inc., Huntsville, AL

Description and Objectives

- •Increase ductility and strength of tungsten using innovative W-Re-HfC alloy
- Reduce cost and fabrication time for propulsion components using net shape VPS processes

	UTS, MPa	UTS, MPa
Material	1000°C	2000°C
Pure W	240	45
W-4Re	360	80
W-4Re-HfC	720	200

OV)

- •Non-Eroding W-Re-HfC throats will be hot fire tested at ATK-Thiokol at no charge to Phase I/II.
- •Advanced high powered propulsion components to be fabricated and hot fire tested in Phase II.

Approach

- •Develop mechanically alloyed and plasma spheroidized W-Re-HfC powder
- •Materials characterization
- Hot fire test VPS W-Re-HfC solid rocket nozzle liners to demonstrate no erosion

Schedule and Deliverables

- •24 month program
- •Metallurgy, tensile, creep, and properties data
- Hot fire test data for W-Re-HfC nozzle liners

NASA & Commercial Applications

- •High powered electrical, nuclear, beamed energy propulsion components. microgravity crucibles
- •Tactical and ballistic nozzles, \$300K Phase III